Quickstart Guide
...
Siemens
Gen 1 Drivers

Siemens S7-300 Serial (Gen1)

5min
review the following information for setting up and configuring the siemens s7 300 serial (gen1) driver manufacturing connect edge compatible series compatibility parameter compatible items driver type serial validated devices/series s7 300 to set up and configure this device in manufacturing connect edge, you will need to do the following step 1 set up and configure the plc device step 2 set up the plc device in manufacturing connect edge devicehub step 3 configure the list of registers step 1 set up and configure the plc device if the device is configured for serial access, find its parameters otherwise, use plc software on your computer to configure your device for serial access step 2 set up the plc device in manufacturing connect edge devicehub configure the following parameters when you connect a device docid\ rfvijdxz7dbad8mwbisma with this driver update default values to the specific set up of your device parameter value type siemens driver siemens s7 300 serial (gen1) communication port local serial connection file path baud rate 19200 data bits 8 parity even, odd, none stop bits 1 station 2 step 3 configure the list of registers when you add tags docid\ ioanzd2awqnkuppgee3eh to the connected device, refer to the following register table and tag parameters refer to the following additional resources device and tag metadata use case docid\ f b720nivllber44rfyhn tag formula variables docid\ pwd 7p kzjxkt pyawaow register table name value type address format min address max address description pe bit, word ddddd 0 40957 pa bit, word ddddd 0 40957 mk bit, byte, word, dword, real, counter, timer ddddd 0 40957 db bit, byte, sint, word, int, stime, time, date, time of day, char, dword, dint, real, string dddddd 0 327677 data block tag parameters name select a register name from the drop down list the available options depend on the names in the register table value type select a data type from the drop down list the available options depend on the register name selected polling interval enter a value in seconds this determines how often the tag should poll the register for data tag name enter a name for the tag description (optional) enter a description for the tag address enter a tag address the value must in the decimal format, within the allowed min/max range omit the leading zeros the device might use the decimal (d), hexadecimal (h), or octal (o) address format see the register table at the bottom of the dialog box for bit tags, append the bit address without the bit separator the lowercase letters in the address format indicate how many digits you should enter in the bit address count enter the number of register values to read a count higher than 1 will generate an array of values from the address value configured and respective subsequent address values db enter the data block number of the tag tag formula enter a formula for the tag to process the generated data two variables are permitted value (current tag value) and timestamp (current tag unix time in milliseconds) the following math functions are available sin cos sqrt tan power power( x ) performs the operation 10^x log log( x ) is the natural logarithm (the logarithm is in base e ) exp exp( x ) performs the operation e^x only publish on change of value select the checkbox to customize nats messages to be published only when the value parameter changes from a previous value to a new one change of value only applies to boolean, numeric (such as int or float), and simple string data types it does not apply to complex types, such as json or array poll once topics will not be affected by change of value settings these topics will still only see a single message meta data metadata summarizes basic information about data this feature allows you to define key value pair data for the device output payload later on it can then be used to find, use, and reuse particular instances of data note if you use special characters in meta data key names, the special characters are replaced with underscore characters in the payload this can cause two key names to be combined into one for example, configuring the key names a b and a&\&b will cause only one key name to be created (a b)